1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
//! Compute k-shortest paths using [Yen's search
//! algorithm](https://en.wikipedia.org/wiki/Yen%27s_algorithm).
use std::{
    cmp::{Ordering, Reverse},
    collections::BinaryHeap,
    hash::Hash,
    time::{Duration, SystemTime},
};

use brontes_types::{pair::Pair, FastHashMap, FastHashSet};
use pathfinding::num_traits::Zero;

pub use crate::graphs::dijkstras::*;

/// A representation of a path.
#[derive(Eq, PartialEq, Debug)]
struct Path<N: Eq + Hash + Clone, E: Eq + Hash + Clone, C: Zero + Ord + Copy> {
    /// The nodes along the path
    nodes:   Vec<N>,
    /// wieghts,
    weights: Vec<E>,
    /// The total cost of the path
    cost:    C,
}

impl<N, E, C> PartialOrd for Path<N, E, C>
where
    N: Eq + Hash + Clone,
    E: Eq + Hash + Clone,
    C: Zero + Ord + Copy,
{
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

impl<N, E, C> Ord for Path<N, E, C>
where
    N: Eq + Hash + Clone,
    E: Eq + Hash + Clone,
    C: Zero + Ord + Copy,
{
    fn cmp(&self, other: &Self) -> Ordering {
        // Compare costs first, then amount of nodes
        let cmp = self.cost.cmp(&other.cost);
        match cmp {
            Ordering::Equal => self.nodes.len().cmp(&other.nodes.len()),
            _ => cmp,
        }
    }
}
/// Compute the k-shortest paths using the [Yen's search
/// algorithm](https://en.wikipedia.org/wiki/Yen%27s_algorithm).
///
/// The `k`-shortest paths starting from `start` up to a node for which
/// `success` returns `true` are computed along with their total cost. The
/// result is return as a vector of (path, cost).
///
/// - `start` is the starting node.
/// - `successors` returns a list of successors for a given node, along with the
///   cost of moving from the node to the successor. Costs MUST be positive.
/// - `success` checks whether the goal has been reached.
/// - `k` is the amount of paths requests, including the shortest one.
///
/// The returned paths include both the start and the end node and are ordered
/// by their costs starting with the lowest cost. If there exist less paths than
/// requested, only the existing ones (if any) are returned.
///
/// # Example
/// We will search the 3 shortest paths from node C to node H. See
/// <https://en.wikipedia.org/wiki/Yen's_algorithm#Example> for a visualization.
///
/// ```
/// use pathfinding::prelude::yen;
/// // Find 3 shortest paths from 'c' to 'h'
/// let paths = yen(
///     &'c',
///     |c| match c {
///         'c' => vec![('d', 3), ('e', 2)],
///         'd' => vec![('f', 4)],
///         'e' => vec![('d', 1), ('f', 2), ('g', 3)],
///         'f' => vec![('g', 2), ('h', 1)],
///         'g' => vec![('h', 2)],
///         'h' => vec![],
///         _ => panic!(""),
///     },
///     |c| *c == 'h',
///     3,
/// );
/// assert_eq!(paths.len(), 3);
/// assert_eq!(paths[0], (vec!['c', 'e', 'f', 'h'], 5));
/// assert_eq!(paths[1], (vec!['c', 'e', 'g', 'h'], 7));
/// assert_eq!(paths[2], (vec!['c', 'd', 'f', 'h'], 8));
///
/// // An example of a graph that has no path from 'c' to 'h'.
/// let empty = yen(
///     &'c',
///     |c| match c {
///         'c' => vec![('d', 3)],
///         'd' => vec![],
///         _ => panic!(""),
///     },
///     |c| *c == 'h',
///     2,
/// );
/// assert!(empty.is_empty());
/// ```

pub fn yen<N, C, E, FN, FS, FSE, PV>(
    start: &N,
    second: Option<&N>,
    successors: FN,
    success: FS,
    success_no_extends: FSE,
    path_value: PV,
    k: Option<usize>,
    max_iters: usize,
    extra_path_timeout: Duration,
    is_extension: bool,
    ends: &FastHashMap<N, Pair>,
) -> Vec<(Vec<E>, C)>
where
    N: Eq + Hash + Clone + Send + Sync,
    E: Clone + Default + Eq + Hash + Send + Sync,
    C: Zero + Ord + Copy + Send + Sync,
    FN: Fn(&N) -> Vec<(N, C)>,
    PV: Fn(&N, &N) -> E + Send + Sync,
    FS: Fn(&N) -> bool + Send + Sync,
    FSE: Fn(&N) -> bool + Send + Sync,
{
    let Some((e, n, c)) =
        dijkstra_internal(start, second, &successors, &path_value, &success, 25_000)
    else {
        return vec![];
    };

    // if we are extending another pair, we don't need any other routes as
    // the extension route has done most of the heavy lifting
    if is_extension || n.last().filter(|node| ends.contains_key(node)).is_some() {
        return vec![(e, c)]
    }

    // A vector containing our paths.
    let mut routes = vec![Path { nodes: n, weights: e, cost: c }];

    let mut visited = FastHashSet::default();
    let iter_k = k.unwrap_or(usize::MAX);

    // A min-heap to store our lowest-cost route candidate
    let mut k_routes = BinaryHeap::new();
    let start = SystemTime::now();
    for ki in 0..(iter_k - 1) {
        if routes.len() <= ki || routes.len() == iter_k {
            // We have no more routes to explore, or we have found enough.
            break
        }

        if SystemTime::now().duration_since(start).unwrap() > extra_path_timeout
            && k.map(|k| k >= routes.len()).unwrap_or(true)
        {
            tracing::debug!("timeout for extra routes hit");
            break
        }
        // Take the most recent route to explore new spurs.
        let previous = &routes[ki].nodes;
        let prev_weight = &routes[ki].weights;

        let k_routes_vec = (0..(previous.len() - 1))
            .filter_map(|i| {
                let spur_node = &previous[i];
                let root_path = &previous[0..i];
                let weight_root_path = &prev_weight[0..i];

                let mut filtered_edges = FastHashSet::default();
                for path in &routes {
                    if path.nodes.len() > i + 1
                        && &path.nodes[0..i] == root_path
                        && &path.nodes[i] == spur_node
                    {
                        filtered_edges.insert((&path.nodes[i], &path.nodes[i + 1]));
                    }
                }
                let filtered_nodes: FastHashSet<&N> = FastHashSet::from_iter(root_path);
                // We are creating a new successor function that will not return the
                // filtered edges and nodes that routes already used.
                let filtered_successor = |n: &N| {
                    successors(n)
                        .into_iter()
                        .filter(|(n2, _)| {
                            !filtered_nodes.contains(&n2) && !filtered_edges.contains(&(n, n2))
                        })
                        .collect::<Vec<_>>()
                };

                // Let us find the spur path from the spur node to the sink using.
                if let Some((values, spur_path, _)) = dijkstra_internal(
                    spur_node,
                    // if first node, then we have a forced second node.
                    second.filter(|_| i == 0),
                    &filtered_successor,
                    &path_value,
                    &success_no_extends,
                    max_iters,
                ) {
                    let nodes: Vec<N> = root_path.iter().cloned().chain(spur_path).collect();
                    let weights: Vec<E> = weight_root_path.iter().cloned().chain(values).collect();
                    // If we have found the same path before, we will not add it.
                    if !visited.contains(&nodes) {
                        // Since we don't know the root_path cost, we need to recalculate.
                        let cost = make_cost(&nodes, &successors);
                        let path = Path { nodes, weights, cost };
                        // Mark as visited
                        visited.insert(path.nodes.clone());
                        // Build a min-heap
                        return Some(Reverse(path))
                    }
                }
                None
            })
            .collect::<Vec<_>>();

        k_routes.extend(k_routes_vec);

        if let Some(k_route) = k_routes.pop() {
            let route = k_route.0;
            let cost = route.cost;
            routes.push(route);
            // If we have other potential best routes with the same cost, we can insert
            // them in the found routes since we will not find a better alternative.
            while routes.len() < iter_k {
                let Some(k_route) = k_routes.peek() else {
                    break;
                };
                if k_route.0.cost == cost {
                    let Some(k_route) = k_routes.pop() else {
                        break; // Cannot break
                    };
                    routes.push(k_route.0);
                } else {
                    break // Other routes have higher cost
                }
            }
        }
    }

    routes.sort_unstable();
    routes
        .into_iter()
        .map(|Path { weights, cost, .. }| (weights, cost))
        .collect()
}

fn make_cost<N, FN, IN, C>(nodes: &[N], successors: &FN) -> C
where
    N: Eq,
    C: Zero,
    FN: Fn(&N) -> IN,
    IN: IntoIterator<Item = (N, C)>,
{
    let mut cost = C::zero();
    for edge in nodes.windows(2) {
        for (n, c) in successors(&edge[0]) {
            if n == edge[1] {
                cost = cost + c;
            }
        }
    }
    cost
}