1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
//! Compute a shortest path using the [Dijkstra search
//! algorithm](https://en.wikipedia.org/wiki/Dijkstra's_algorithm).

use std::{cmp::Ordering, collections::BinaryHeap, hash::Hash};

use brontes_types::{FastHashMap, FastHashSet, FastHasher};
use indexmap::{
    map::Entry::{Occupied, Vacant},
    IndexMap,
};
use pathfinding::num_traits::Zero;

type FxIndexMap<K, V> = IndexMap<K, V, FastHasher>;

const MAX_LEN: usize = 4;
const MAX_OTHER_PATHS: usize = 3;

/// Compute a shortest path using the [Dijkstra search
/// algorithm](https://en.wikipedia.org/wiki/Dijkstra's_algorithm).
///
/// The shortest path starting from `start` up to a node for which `success`
/// returns `true` is computed and returned along with its total cost, in a
/// `Some`. If no path can be found, `None` is returned instead.
///
/// - `start` is the starting node.
/// - `successors` returns a list of successors for a given node, along with the
///   cost for moving from the node to the successor. This cost must be
///   non-negative.
/// - `success` checks whether the goal has been reached. It is not a node as
///   some problems require a dynamic solution instead of a fixed node.
///
/// A node will never be included twice in the path as determined by the `Eq`
/// relationship.
///
/// The returned path comprises both the start and end node.
///
/// # Example
///
/// We will search the shortest path on a chess board to go from (1, 1) to (4,
/// 6) doing only knight moves.
///
/// The first version uses an explicit type `Pos` on which the required traits
/// are derived.
///
/// ```
/// use pathfinding::prelude::dijkstra;
///
/// #[derive(Clone, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
/// struct Pos(i32, i32);
///
/// impl Pos {
///     fn successors(&self) -> Vec<(Pos, usize)> {
///         let &Pos(x, y) = self;
///         vec![
///             Pos(x + 1, y + 2),
///             Pos(x + 1, y - 2),
///             Pos(x - 1, y + 2),
///             Pos(x - 1, y - 2),
///             Pos(x + 2, y + 1),
///             Pos(x + 2, y - 1),
///             Pos(x - 2, y + 1),
///             Pos(x - 2, y - 1),
///         ]
///         .into_iter()
///         .map(|p| (p, 1))
///         .collect()
///     }
/// }
///
/// static GOAL: Pos = Pos(4, 6);
/// let result = dijkstra(&Pos(1, 1), |p| p.successors(), |p| *p == GOAL);
/// assert_eq!(result.expect("no path found").1, 4);
/// ```
///
/// The second version does not declare a `Pos` type, makes use of more
/// closures, and is thus shorter.
/// ```
/// use pathfinding::prelude::dijkstra;
///
/// static GOAL: (i32, i32) = (4, 6);
/// let result = dijkstra(
///     &(1, 1),
///     |&(x, y)| {
///         vec![
///             (x + 1, y + 2),
///             (x + 1, y - 2),
///             (x - 1, y + 2),
///             (x - 1, y - 2),
///             (x + 2, y + 1),
///             (x + 2, y - 1),
///             (x - 2, y + 1),
///             (x - 2, y - 1),
///         ]
///         .into_iter()
///         .map(|p| (p, 1))
///     },
///     |&p| p == GOAL,
/// );
/// assert_eq!(result.expect("no path found").1, 4);
/// ```
// pub fn dijkstra<N, C, E, FN, IN, FS, PV>(
//     start: &N,
//     mut successors: FN,
//     path_value: &PV,
//     mut success: FS,
// ) -> Option<(Vec<E>, C)>
// where
//     N: Eq + Hash + Clone,
//     E: Clone + Default,
//     C: Zero + Ord + Copy,
//     FN: FnMut(&N) -> IN,
//     PV: FnMut(&N, &N) -> E,
//     IN: IntoIterator<Item = (N, C)>,
//     FS: FnMut(&N) -> bool,
// {
//     dijkstra_internal(start, &mut successors, path_value, &mut success)
// }

pub(crate) fn dijkstra_internal<N, C, E, FN, FS, PV>(
    start: &N,
    second: Option<&N>,
    successors: &FN,
    path_value: &PV,
    success: &FS,
    max_iter: usize,
) -> Option<(Vec<E>, Vec<N>, C)>
where
    N: Eq + Hash + Clone,
    C: Zero + Ord + Copy,
    E: Clone + Default,
    FN: Fn(&N) -> Vec<(N, C)>,
    PV: Fn(&N, &N) -> E,
    FS: Fn(&N) -> bool,
{
    let (parents, reached) = run_dijkstra(start, second, successors, path_value, success, max_iter);
    reached.map(|target| {
        (
            reverse_path(&parents, |&(p, ..)| p, |_, (_, _, e)| e, target),
            reverse_path(&parents, |&(p, ..)| p, |v, (..)| v, target),
            parents.get_index(target).unwrap().1 .1,
        )
    })
}

type DijkstrasRes<N, C, E> = (FxIndexMap<N, (usize, C, E)>, Option<usize>);

fn run_dijkstra<N, C, E, FN, FS, PV>(
    start: &N,
    second: Option<&N>,
    successors: &FN,
    path_value: &PV,
    stop: &FS,
    max_iter: usize,
) -> DijkstrasRes<N, C, E>
where
    N: Eq + Hash + Clone,
    C: Zero + Ord + Copy,
    E: Clone + Default,
    FN: Fn(&N) -> Vec<(N, C)>,
    PV: Fn(&N, &N) -> E,
    FS: Fn(&N) -> bool,
{
    let mut i = 0usize;
    let mut checked_second = {
        // we only check second if we know that the second node has edges that aren't
        // the first node.
        if let Some(s) = second {
            let next = successors(s);

            next.into_iter()
                .filter(|(next_i, _)| next_i != start)
                .count()
                <= MAX_OTHER_PATHS
        } else {
            true
        }
    };

    let mut visited = FastHashSet::default();
    let mut to_see = BinaryHeap::new();
    to_see.push(SmallestHolder { cost: Zero::zero(), index: 0, hops: 0 });
    let mut parents: FxIndexMap<N, (usize, C, E)> = FxIndexMap::default();
    parents.insert(start.clone(), (usize::MAX, Zero::zero(), E::default()));

    let mut target_reached = None;

    'outer: while let Some(SmallestHolder { cost, index, hops }) = to_see.pop() {
        if hops >= MAX_LEN {
            continue
        }

        if i == max_iter {
            tracing::debug!("max iter on dijkstra hit");
            break
        }

        let (node, _) = parents.get_index(index).unwrap();
        if visited.contains(node) {
            continue
        }

        if stop(node) {
            target_reached = Some(index);
            break
        }

        let successors = successors(node);
        let base_node = node.clone();

        for (successor, move_cost) in &successors {
            let break_after = if !checked_second {
                let second = second.unwrap();
                checked_second = successor == second;

                if !checked_second {
                    continue
                }
                true
            } else {
                false
            };

            i += 1;

            if visited.contains(successor) {
                continue
            }

            let new_cost = cost + *move_cost;
            let value = path_value(&base_node, successor);
            let q_break = stop(successor);

            let n;
            match parents.entry(successor.clone()) {
                Vacant(e) => {
                    n = e.index();
                    e.insert((index, new_cost, value));
                }
                Occupied(mut e) => {
                    if e.get().1 > new_cost {
                        n = e.index();
                        e.insert((index, new_cost, value));
                    } else {
                        continue
                    }
                }
            }

            // because our weight system is arbitrary,
            // we don't want to prove we have the shortest path
            if q_break {
                target_reached = Some(n);
                break 'outer
            }

            to_see.push(SmallestHolder { cost: new_cost, index: n, hops: hops + 1 });

            if break_after {
                break
            }
        }

        if !checked_second {
            checked_second = true;
            for (successor, move_cost) in successors {
                i += 1;

                if visited.contains(&successor) {
                    continue
                }

                let new_cost = cost + move_cost;
                let value = path_value(&base_node, &successor);
                let q_break = stop(&successor);

                let n;
                match parents.entry(successor) {
                    Vacant(e) => {
                        n = e.index();
                        e.insert((index, new_cost, value));
                    }
                    Occupied(mut e) => {
                        if e.get().1 > new_cost {
                            n = e.index();
                            e.insert((index, new_cost, value));
                        } else {
                            continue
                        }
                    }
                }

                if q_break {
                    target_reached = Some(n);
                    break 'outer
                }

                to_see.push(SmallestHolder { cost: new_cost, index: n, hops: hops + 1 });
            }
        }

        visited.insert(base_node);
    }
    (parents, target_reached)
}

/// Build a path leading to a target according to a parents map, which must
/// contain no loop. This function can be used after [`dijkstra_all`] or
/// [`dijkstra_partial`] to build a path from a starting point to a reachable
/// target.
///
/// - `target` is reachable target.
/// - `parents` is a map containing an optimal parent (and an associated cost
///   which is ignored here) for every reachable node.
///
/// This function returns a vector with a path from the farthest parent up to
/// `target`, including `target` itself.
///
/// # Panics
///
/// If the `parents` map contains a loop, this function will attempt to build
/// a path of infinite length and panic when memory is exhausted.
///
/// # Example
///
/// We will use a `parents` map to indicate that each integer from 2 to 100
/// parent is its integer half (2 -> 1, 3 -> 1, 4 -> 2, etc.)
///
/// ```
/// use pathfinding::prelude::build_path;
///
/// let parents = (2..=100).map(|n| (n, (n / 2, 1))).collect();
/// assert_eq!(vec![1, 2, 4, 9, 18], build_path(&18, &parents));
/// assert_eq!(vec![1], build_path(&1, &parents));
/// assert_eq!(vec![101], build_path(&101, &parents));
/// ```
#[allow(clippy::implicit_hasher)]
#[allow(dead_code)]
//TODO: Will prune if not used
pub fn build_path<N, C>(target: &N, parents: &FastHashMap<N, (N, C)>) -> Vec<N>
where
    N: Eq + Hash + Clone,
{
    let mut rev = vec![target.clone()];
    let mut next = target.clone();
    while let Some((parent, _)) = parents.get(&next) {
        rev.push(parent.clone());
        next = parent.clone();
    }
    rev.reverse();
    rev
}

struct SmallestHolder<K> {
    cost:  K,
    index: usize,
    hops:  usize,
}

impl<K: PartialEq> PartialEq for SmallestHolder<K> {
    fn eq(&self, other: &Self) -> bool {
        self.cost == other.cost
    }
}

impl<K: PartialEq> Eq for SmallestHolder<K> {}

impl<K: Ord> PartialOrd for SmallestHolder<K> {
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

impl<K: Ord> Ord for SmallestHolder<K> {
    fn cmp(&self, other: &Self) -> Ordering {
        other.cost.cmp(&self.cost)
    }
}

#[allow(clippy::needless_collect)]
fn reverse_path<N, V, F, K, E>(
    parents: &FxIndexMap<N, V>,
    mut parent: F,
    mut collect: K,
    start: usize,
) -> Vec<E>
where
    E: Clone,
    N: Eq + Hash + Clone,
    K: for<'a> FnMut(&'a N, &'a V) -> &'a E,
    F: FnMut(&V) -> usize,
{
    let mut i = start;
    let path = std::iter::from_fn(|| {
        parents.get_index(i).map(|(node, value)| {
            i = parent(value);
            collect(node, value)
        })
    })
    .collect::<Vec<&E>>();
    // Collecting the going through the vector is needed to revert the path because
    // the unfold iterator is not double-ended due to its iterative nature.
    path.into_iter().cloned().rev().collect()
}